
V7/x86 Assembler Reference Manual

Robert Nordier
Nordier & Associates
www.nordier.com

The V7/x86 assembler as is an x86 (IA-32) assembler capable of handling
both 16-bit and 32-bit mode instructions. It performs span-dependent instruc-
tion optimization, even in the presence of align statements, and features fairly
full support for x86 general purpose and floating-point instructions; however,
multimedia (MMX, SSE, SSE2, etc.) instructions are not supported.

Input syntax has been designed to be broadly compatible with existing Unix
x86 assemblers (which are themselves mutually incompatible), though in some
instances syntax based on that of the original Unix assembler has been preferred.

This document is intended to supplement, rather than to replace, the original
Version 7 Assembler Reference Manual, and the reader is encouraged to consult
that document to clarify any general points incompletely treated here.

1 Usage

The assembler is invoked using the syntax

as [-u] [-o object] source

where the “-o” option specifies the name of the object file which otherwise
defaults to a.out. The option “-u” may be given, but is ignored, since the
default behavior is to treat all undefined symbols as undefined-external.

2 Lexical conventions

Assembler tokens comprise registers, identifiers, temporary symbols, constants,
string-literals, operators, and punctuators.

Blank (0x20) and tab (0x09) characters may appear between tokens, and
may be required to delimit tokens; they are otherwise ignored.

Comments begin with two forward slashes (//) and extend for the rest of
the line.

2.1 Registers

The following machine register names are recognised:

1

8-bit al, cl, dl, bl, ah, ch, dh, bh
16-bit ax, cx, dx, bx, sp, bp, si, di
32-bit eax, ecx, edx, ebx, esp, ebp, esi, edi
segment es, cs, ss, ds, fs, gs
control cr0 . . . cr7
debug dr0 . . . dr7
test tr0 . . . tr7
FPU st, st(0) . . . st(7)

2.2 Identifiers

Identifiers are drawn from the set of alphanumeric characters together with “.”
(dot) and “ ” (underscore), but may not begin with a digit. Only the first eight
characters of an identifier are significant. Case is significant.

2.3 Temporary symbols

These constitute references to numeric labels, and consist of a digit followed by
“b” or “f”. They are further discussed in Section 5.1.

2.4 Constants

As in the language C, integer constants beginning with the sequence “0X” or
“0x” are taken as hexadecimal; those beginning with“0”, as octal; and those
not beginning with “0”, as decimal.

Character constants consist of a single character within single quotes. As in
C, simple, octal, and hexadecimal escape sequences are supported. The special
escape sequences are

\b backspace
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\ooo (octal)
\xhh (hexadecimal)

and otherwise the sequence ‘\c’ has the value of the character c.

2.5 String-literals

String literals are sequences of characters, including escape sequences, delimited
by double quotes.

2.6 Operators

Operators are discussed in Section 6.

2

2.7 Punctuators

Punctuators include the following characters: $ () * , : ; []. They are
treated in various places throughout the manual: for example, the colon is used
to indicate a label, and is covered in Section 5.1, in dealing with labels.

3 Segments

Three segments are available: text, data and bss, intended for code, initialized
data, and uninitialized data respectively. The current segment defaults to text,
and the current segment can be changed through the use of pseudo-operations,
as discussed in Section 7.

4 The location counter

The special purpose identifier consisting of a single dot (.) denotes the location
counter relating to the current segment.

5 Statements

Statements are separated by a semi-colon or by a newline, and may be preceded
by labels.

5.1 Labels

There are two kinds of labels: name labels and numeric labels.
A name label consists of an identifier (name) followed by a colon. The

identifier is assigned the value of the location counter (.) on the first pass,
and a phase error occurs on the second pass if the value of the symbol and the
location counter differ.

A numeric label consists of a digit followed by a colon. Such a label is
referred to as [0-9][bf] where, for example, “2b” signifies the nearest numeric
label with the value 2 in a backward direction, and “2f” signifies the same, but
in a forward direction.

5.2 Null statements

Null statements are possible and permissible: for instance, blank lines or lines
containing only labels.

5.3 Keyword statements

All non-null statements are keyword statements. Keyword statements are either
pseudo-operations (see Section 7) or machine instructions (see Section 8).

3

6 Expressions

6.1 Expression operators

Operators are as follow:

∗ multiplication
/ division
% remainder
+ addition*
− subtraction*

<< left shift
>> right shift
& bitwise and
| bitwise or
! bitwise or not*

where an asterisk indicates operators that are both unary and binary.
Operators have equal precedence. Square brackets ([]) may be used for

grouping.

7 Pseudo-operations

7.1 .align expression [, expression]

Advances the current location counter to a specified storage boundary, by out-
putting fill characters as required. The first expression is the desired alignment,
which should be an integral power of two, and the second (optional) expression
is the fill character value, which defaults to zero.

7.2 .ascii “string” [, “string”] . . .

Generates the characters corresponding to one or more string-literals. These
are not terminated by a zero byte. See also .asciz.

7.3 .asciz “string” [, “string”] . . .

Generates the characters corresponding to one or more string-literals, adding a
terminating zero to each. See also .ascii.

7.4 .bss

Sets the current segment to bss. See also .data and .text.

7.5 .byte expression [, expression] . . .

Assembles the expressions in successive bytes. See also .long and .word.

4

7.6 .code16

Sets the assembler to produce code for a processor operating in 16-bit mode.
See also .code32.

7.7 .code32

Sets the assembler to produce code for a processor operating in 32-bit mode.
See also .code16.

7.8 .comm name, expression

Declares a common symbol of specified length. See also .lcomm.

7.9 .data

Sets the current segment to data. See also .bss and .text.

7.10 .globl name [, name] . . .

Makes each of the specified symbols external.

7.11 .lcomm name, expression

Declares a local common symbol of specified length. The effect is similar to the
pseudo-operation .comm except that the symbol is not made external. See also
.comm.

7.12 .long expression [, expression] . . .

Assembles the expressions in successive (4-byte) long words. See also .byte and
.word.

7.13 .set name, expression

Sets an identifier to a specified value.

7.14 .space expression [, expression]

Generates n bytes, where n is the value of the first expression, each of which
have the value c, where c is the value of the second expression, or zero if no
second expression is supplied.

7.15 .text

Sets the current segment to text. See also .bss and .data.

5

7.16 .word expression [, expression] . . .

Assembles the expressions in successive (2-byte) words. See also .byte and
.long.

8 Diagnostics

Diagnostics are intended to be self-explanatory.

6

