/ u4 -- unix

setisp:

 mov r1,-(sp)

 mov r2,-(sp)

 mov r3,-(sp)

 mov clockp,-(sp)

 mov $s.syst+2,clockp

 jmp (r0)

clock: / interrupt from 60 cycle clock

 mov r0,-(sp) / save r0

 tst *$lks / restart clock?

 mov $s.time+2,r0 / increment the time of day

 inc (r0)

 bne 1f

 inc -(r0)

1:

 mov clockp,r0 / increment appropriate time category

 inc (r0)

 bne 1f

 inc -(r0)

1:

 mov $uquant,r0 / decrement user time quantum

 decb (r0)

 bge 1f / if less than 0

 clrb (r0) / make it 0

1: / decrement time out counts return now if priority was not 0

 cmp 4(sp),$200 / ps greater than or equal to 200

 bge 2f / yes, check time outs

 tstb (r0) / no, user timed out?

 bne 1f / no

 cmpb sysflg,$-1 / yes, are we outside the system?

 bne 1f / no, 1f

 mov (sp)+,r0 / yes, put users r0 in r0

 sys 0 / sysrele

 rti

2: / priority is high so just decrement time out counts

 mov $toutt,r0 / r0 points to beginning of time out table

2:

 tstb (r0) / is the time out?

 beq 3f / yes, 3f (get next entry)

 decb (r0) / no, decrement the time

 bne 3f / isit zero now?

 incb (r0) / yes, increment the time

3:

 inc r0 / next entry

 cmp r0,$touts / end of toutt table?

 blo 2b / no, check this entry

 mov (sp)+,r0 / yes, restore r0

 rti / return from interrupt

1: / decrement time out counts; if 0 call subroutine

 mov (sp)+,r0 / restore r0

 mov $240,*$ps / set processor priority to 5

 jsr r0,setisp / save registers

 mov $touts-toutt-1,r0 / set up r0 as index to decrement thru

 / the table

1:

 tstb toutt(r0) / is the time out for this entry

 beq 2f / yes

 decb toutt(r0) / no, decrement the time

 bne 2f / is the time 0, now

 asl r0 / yes, 2 x r0 to get word index for tout entry

 jsr r0,*touts(r0) / go to appropriate routine specified in this

 asr r0 / touts entry; set r0 back to toutt index

2:

 dec r0 / set up r0 for next entry

 bge 1b / finished? , no, go back

 br retisp / yes, restore registers and do a rti

ttyi: / console tty input interrupt routine

 jsr r0,setisp / save reg r1, r2, r3

 mov *$tkb,r1 / r1 = char in tty reader buffer

 inc *$tks / set the reader enable bit

 bic $!177,r1 / clear upper 9 bits of the character (strip off

 / 8th bit of char)

 cmp r1,$'a-40 / is character upper case A,..., upper case Z.

 / note that

 blt 1f / lower case a is represented by 141, upper case by

 cmp r1,$'z-40 / 101; and lower case z by 172, upper

 / case Z by 132.

 bgt 1f / if not upper case, branch

 add $40,r1 / if upper case, calculate the representation of its

 / lower case counter part

1:

 cmp r1,$175 / char = "}"? Note: may be quit char (fs)

 beq 2f / yes 2f

 cmp r1,$177 / char = "del" ?

 beq 2f / yes, 2f

 jsr r0,putc; 0 / put char in r1 on clist entry

 br 1f

 movb r1,ttyoch / put char in ttyoch

 jsr r0,startty / load char in tty output data buffer

 cmp r1,$4 / r1 = "eot"

 beq 1f / yes, 1f

 cmp r1,$12 / r1 = "lf"

 beq 1f / yes 1f

 cmpb cc+0,$15. / are there less than 15 chars on the input list

 blo retisp / yes, return

1:

 jsr r0,wakeup; runq; 0 / no, wakeup the input process

 br retisp / return

2: / r1 = "}" or "delete" to get here

 mov tty+[ntty*8]-8+6,r2 / move console tty buffer address to r2

 beq 2f / if 0, wakeall

 movb r1,6(r2) / move "}" or del into "interrupt char"

 / byte of buffer

2:

 jsr r0,wakeall / wakeup all sleeping processes

 br retisp / return

wakeall:

 mov $39.,0f / flll arg2 of wakeup call wlth 39

1:

 jsr r0,wakeup; runq+4; 0:.. / wakeup the processes in the

 dec 0b / wait list; decrement arg2

 bge 1b / if not done, go back

 rts r0

ttyo: / console typewriter output interrupt routine

 jsr r0,setisp / save registers

 jsr r0,startty / put a char on the console tty output buffer

 br retisp / restore registers

retisp:

 mov (sp)+,clockp / pop values before interrupt off the stack

 mov (sp)+,r3

 mov (sp)+,r2

 mov (sp)+,r1

 mov (sp)+,r0

 rti / return from interrupt

ppti: / paper tape lnput interrupt routine

 jsr r0,setisp / save registers

 movb pptiflg,r1 / place "pptiflg" in r1

 jmp *1f(r1) / jump to location speclfled by value of "pptiflg"

1:

 retisp / file not open

 1f / file just opened

 2f / file normal

 retisp / file not closed

1: / file just opened

 tstb *$prs+1 / is error bit set in prs

 bge 1f / no

 jsr r0,pptito / place 10 in toutt entry for ppt input

 br retisp

1:

 movb $4,pptiflg / change "pptiflg" to indicate file "normal"

2:

 jsr r0,wakeup; runq+2; 2 / wakeup process for ppt input entry

 / in wlist

 tstb *$prs+1 / is error bit set

 blt 1f / yes

 mov *$prb,r1 / place contents ppt read buffer in r1

 jsr r0,putc; 2 / place character in clist area for ppt input

 br .+2 / temp / if no space in clist character lost

 cmpb cc+2,$50. / character count in clist area for ppt lnput

 / greater than or equal to 50

 bhis retisp / yes

 inc *$prs / no, set reader enable bit in prs

 br retisp

1:

 movb $6,pptiflg / set pptiflg to 6 to indicate error bit set

 br retisp

/lpto:

/ jsr r0,setisp

/ jsr r0,starlpt

/ br retisp

ppto: / paper tape output interrupt routine

 jsr r0,setisp / save registers

 jsr r0,starppt / get next character from clist, and output

 / if possible

 br retisp / pop register values from stack

/ starlpt:

/ cmpb cc+5.,$100.

/ bhi 1f

/ jsr r0,wakeup; runq+2; 5

/1:

/ tstb *$lps

/ bge 1f

/ jsr r0,getc; 5

/ br 1f

/ mov r1,*$lpb

/ br starlpt

/1:

/ rts r0

startty: / start or restart console tty output

 cmpb cc+1,$5.

 bhi 1f / branch to 1f when character count on tty (? input,

 / output) list is greater than 5.

 jsr r0,wakeup; runq+2; 1

1:

 tstb *$tps / test console output ready bit

 bge 2f / branch if ready bit is clear

 tstb toutt+0 / is toutt for console a zero

 bne 2f / if not; branch to 2f

 movb ttyoch,r1 / put character to be output in r1

 bne 1f

 jsr r0,getc; 1 / if char is nul, get a char from console

 / output list

 br 2f / if console output list is empty, branch to 2f

1:

 clrb ttyoch

 mov r1,*$tpb / put character in console output register

 cmp r1,$12 / is char a line feed

 bne 1f

 movb $15,ttyoch / put a cr in ttyoch

1:

 cmp r1,$11 / char = ht

 bne 1f

 movb $15.,toutt+0 / set time out to 15 clock tics

1:

 cmp r1,$15 / char = cr

 bne 2f

 movb $15.,toutt+0 / set time out to 15 clock ticks

2:

 rts r0

pptito: / paper tape input touts subrouting

 cmpb pptiflg,$2 / does "pptiflg" indicate file just opened

 bne 1f / no, do nothing pyf

 movb $10.,toutt+1 / yes, place 10 in tout entry for tty input

 tstb *$prs+1 / is error bit set

 blt 1f / yes, return

 inc *$prs / no, set read enable bit

1:

 rts r0

starppt: / start ppt output

 cmpb cc+3,$10. / is character count for ppt output greater

 / than 10.

 bhi 1f / yes, branch

 jsr r0,wakeup; runq+2; 3 / no, wakeup process in wlist

 / entry for ppt input

1:

 tstb *$pps / is ready bit set in punch status word

 bge 1f / no, branch

 jsr r0,getc; 3 / yes, get next char in clist for pptout and

 / place in r1

 br 1f / if none, branch

 mov r1,*$ppb / place character in ppt buffer

1:

 rts r0

wakeup: / wakeup processes waiting for an event by linking them to the

 / queue

 mov r1,-(sp) / put char on stack

 mov (r0)+,r2 / r2 points to a queue

 mov (r0)+,r3 / r3 = wait channel number

 movb wlist(r3),r1 / r1 contains process number in that wait

 / channel that was sleeping

 beq 2f / if 0 return, nothing to wakeup

 cmp r2,u.pri / is runq greater than or equal to users process

 / priority

 bhis 1f / yes, don't set time quantum to zero

 clrb uquant / time quantum = 0

1:

 clrb wlist(r3) / zero wait channel entry

 jsr r0,putlu / create a link from the last user on the Q

 / to this process number that got woken

2:

 mov (sp)+,r1 / restore r1

 rts r0

sleep: / wait for event

 jsr r0,isintr / check to see if interrupt or quit from user

 br 2f / something happened / yes, his interrupt so return

 / to user

 mov (r0)+,r1 / put number of wait channel in r1

 movb wlist(r1),-(sp) / put old process number in there, on

 / the stack

 movb u.uno,wlist(r1) / put process number of process to put

 / to sleep in there

 mov cdev,-(sp) / nothing happened in isintr so

 jsr r0,swap / swap out process that needs to sleep

 mov (sp)+,cdev / restore device

 jsr r0,isintr / check for interrupt of new process

 br 2f / yes, return to new user

 movb (sp)+,r1 / no, r1 = old process number that was originally

 / on the wait channel

 beq 1f / if 0 branch

 mov $runq+4,r2 / r2 points to lowest priority queue

 mov $300,*$ps / processor priority = 6

 jsr r0,putlu / create link to old process number

 clr *$ps / clear the status; process priority = 0

1:

 rts r0 / return

2:

 jmp sysret / return to user

isintr:

 mov r1,-(sp) / put number of wait channel on the stack

 mov r2,-(sp) / save r2

 mov u.ttyp,r1 / r1 = pointer to buffer of process control

 / typewriter

 beq 1f / if 0, do nothing except skip return

 movb 6(r1),r1 / put interrupt char in the tty buffer in r1

 beq 1f / if its 0 do nothing except skip return

 cmp r1,$177 / is interrupt char = delete?

 bne 3f / no, so it must be a quit (fs)

 tst u.intr / yes, value of u.intr determines handling

 / of interrupts

 bne 2f / if not 0, 2f. If zero do nothing.

1:

 tst (r0)+ / bump r0 past system return (skip)

4:

 mov (sp)+,r2 / restore r1 and r2

 mov (sp)+,r1

 rts r0

3: / interrupt char = quit (fs)

 tst u.quit / value of u.quit determines handling of quits

 beq 1b / u.quit = 0 means do nothing

2: / get here because either u.intr <> 0 or u.qult <> O

 mov $tty+6,r1 / move pointer to tty block into r1

1: / find process control tty entry in tty block

 cmp (r1),u.ttyp / is this the process control tty buffer?

 beq 1f / block found go to 1f

 add $8,r1 / look at next tty block

 cmp r1,$tty+[ntty*8]+6 / are we at end of tty blocks

 blo 1b / no

 br 4b / no process control tty found so go to 4b

1:

 mov $240,*$ps / set processor priority to 5

 movb -3(r1),0f / load getc call argument; character llst

 / identifier

 inc 0f / increment

1:

 jsr r0,getc; 0:.. / erase output char list for control

 br 4b / process tty. This prevents a line of stuff

 / being typed out after you hit the interrupt

 / key

 br 1b

