/ u6 -- unix

readi:

clr
u.nread / accumulates number of bytes transmitted

tst
u.count / is number of bytes to be read greater than 0

bgt
1f / yes, branch

rts
r0 / no, nothing to read; return to caller

1:

mov
r1,-(sp) / save i-number on stack

cmp
r1,$40. / want to read a special file (i-nodes 1,...,40 are

 / for special files)

ble
1f / yes, branch

jmp
dskr / no, jmp to dskr; read file with i-node number (r1)

 / starting at byte ((u.fofp)), read in u.count bytes

1:

asl
r1 / multiply inode number by 2

jmp
*1f-2(r1)

1:

rtty / tty; r1=2

rppt / ppt; r1=4

rmem / mem; r1=6

rrf0 / rf0

rrk0 / rk0

rtap / tap0

rtap / tap1

rtap / tap2

rtap / tap3

rtap / tap4

rtap / tap5

rtap / tap6

rtap / tap7

rcvt / tty0

rcvt / tty1

rcvt / tty2

rcvt / tty3

rcvt / tty4

rcvt / tty5

rcvt / tty6

rcvt / tty7

rcrd/ crd

rtty: / read from console tty

mov
tty+[8*ntty]-8+6,r5 / r5 is the address of the 4th word of

 / of the control and status block

tst
2(r5) / for the console tty; this word points to the console

 / tty buffer

bne
1f / 2nd word of console tty buffer contains number

 / of chars. Is this number non-zero?

jsr
r0,canon; ttych / if 0, call 'canon' to get a line

 / (120 chars.)

1:

tst
2(r5) / is the number of characters zero

beq
ret1 / yes, return to caller via 'ret1'

movb
*4(r5),r1 / no, put character in r1

inc
4(r5) / 3rd word of console tty buffer points to byte which

 / contains the next char.

dec
2(r5) / decrement the character count

jsr
r0,passc / move the character to core (user)

br
1b / get next character

ret1:

jmp
ret / return to caller via 'ret'

rppt: / read paper tape

jsr
r0,pptic / gets next character in clist for ppt input and

 / places

br ret / it in r1; if there 1s no problem with reader, it

 / also enables read bit in prs

jsr
r0,passc / place character in users buffer area

br
rppt

rmem: / transfer characters from memory to a user area of core

mov
*u.fofp,r1 / save file offset which points to the char to

 / be transferred to user

inc
*u.fofp / increment file offset to point to 'next' char in

 / memory file

movb
(r1),r1 / get character from memory file, put it in r1

jsr
r0,passc / move this character to the next byte of the

 / users core area

br
 rmem / continue

1:

rcrd:

jmp
error / see 'error' routine

dskr:

mov
(sp),r1 / i-number in r1

jsr
r0,iget / get i-node (r1) into i-node section of core

mov
i.size,r2 / file size in bytes in r2

sub
*u.fofp,r2 / subtract file offset

blos
ret

cmp
r2,u.count / are enough bytes left in file to carry out read

bhis
1f

mov
r2,u.count / no, just read to end of file

1 :

jsr
r0,mget / returns physical block number of block in file

 / where offset points

jsr
r0,dskrd / read in block, r5 points to 1st word of data in

 / buffer

jsr
r0,sioreg

2:

movb
(r2)+,(r1)+ / move data from buffer into working core

 / starting at u.base

dec
r3

bne
2b / branch until proper number of bytes are transferred

tst
u.count / all bytes read off disk

bne
dskr

br
ret

passc:

movb
r1,*u.base / move a character to the next byte of the

 / users buffer

inc
u.base / increment the pointer to point to the next byte

 / in users buffer

inc
u.nread / increment the number of bytes read

dec
u.count / decrement the number of bytes to be read

bne
1f / any more bytes to read?; yes, branch

mov
(sp)+,r0 / no, do a non-local return to the caller of

 / 'readi' by:

ret: / (1) pop the return address off the stack into r0

mov
(sp)+,r1 / (2) pop the i-number off the stack into r1

1:

clr
*$ps / clear processor status

rts
r0 / return to address currently on top of stack

writei:

clr
u.nread / clear the number of bytes transmitted during

 / read or write calls

tst
u.count / test the byte count specified by the user

bgt
1f / any bytes to output; yes, branch

rts
r0 / no, return - no writing to do

1:

mov
r1 ,-(sp) / save the i-node number on the stack

cmp
r1,$40. / does the i-node number indicate a special file?

bgt
dskw / no, branch to standard file output

asl
r1 / yes, calculate the index into the special file

jmp
*1f-2(r1) / jump table and jump to the appropriate routine

1:

wtty
/ tty

wppt
/ ppt

wmem
/ mem

wrf0
/ rf0

wrk0
/ rk0

wtap
/ tap0

wtap
/ tap1

wtap
/ tap2

wtap
/ tap3

wtap
/ tap4

wtap
/ tap5

wtap
/ tap6

wtap
/ tap7

xmtt
/ tty0

xmtt
/ tty1

xmtt
/ tty2

xmtt
/ tty3

xmtt
/ tty4

xmtt
/ tty5

xmtt
/ tty6

xmtt
/ tty7

/
w1pr / lpr

wtty:

jsr
r0,cpass / get next character from user buffer area; if

 / none go to return address in syswrite

tst
r1 / is character = null

beq
wtty / yes, get next character

1 :

mov
$240,*$ps / no, set processor priority to five

cmpb
cc+1,$20. / is character count for console tty greater

 / than 20

bhis
2f / yes; branch to put process to sleep

jsr
r0,putc; 1 / find place in freelist to assign to console

 / tty and

br 2f / place character in list; if none available

 / branch to put process to sleep

jsr
r0,startty / attempt to output character on tty

br
wtty

2:

mov
r1,-(sp) / place character on stack

jsr
r0,sleep; 1 / put process to sleep

mov
(sp)+,r1 / remove character from stack

br
1b / try again to place character in clist and output

wppt:

jsr
r0,cpass / get next character from user buffer area,

 / if none return to writei's calling routine

jsr
r0,pptoc / output character on ppt

br
wppt

/wlpr:

/
jsr
r0,cpass

/
cmp
r0,$'a

/
blo
1f

/
cmp
r1,$'z

/
bhi
1f

/
sub
$40,r1

/1:

/
jsr
r0,lptoc

/
br
wlpr

wmem: / transfer characters from a user area of core to memory file

jsr
r0,cpass / get next character from users area of core and

 / put it in r1

mov
r1,-(sp) / put character on the stack

mov
*u.fofp,r1 / save file offset in r1

inc
*u.fofp / increment file offset to point to next available

 / location in file

movb
(sp)+,(r1) / pop char off stack, put in memory loc assigned

 / to it

br
wmem / continue

1:

jmp
error / ?

dskw: / write routine for non-special files

mov
(sp),r1 / get an i-node number from the stack into r1

jsr
r0,iget / write i-node out (if modified), read i-node 'r1'

 / into i-node area of core

mov
 *u.fofp,r2 / put the file offset [(u.off) or the offset in

 / the fsp entry for this file] in r2

add
 u.count,r2 / no. of bytes to be written + file offset is

 / put in r2

cmp
 r2,i.size / is this greater than the present size of

 / the file?

blos
 1f / no, branch

 mov
r2,i.size / yes, increase the f11e size to file offset +

 / no. of data bytes

 jsr
r0,setimod / set imod=1 (i.e., core inode has been

 / modified), stuff tlme of modification into

 / core image of i-node

1:

jsr
r0,mget / get the block no. in which to write the next data

 / byte

bit
*u.fofp,$777 / test the lower 9 bits of the file offset

bne
2f / if its non-zero, branch; if zero, file offset = 0,

 / 512, 1024,...(i.e., start of new block)

cmp
u.count,$512. / if zero, is there enough data to fill an

 / entire block? (i.e., no. of

bhis
3f / bytes to be written greater than 512.? Yes, branch.

 / Don't have to read block

2: / in as no past info. is to be saved (the entire block will be

 / overwritten).

jsr
r0,dskrd / no, must retain old info.. Hence, read block 'r1'

 / into an I/O buffer

3:

jsr
r0,wslot / set write and inhibit bits in I/O queue, proc.

 / status=0, r5 points to 1st word of data

jsr
r0,sioreg / r3 = no. of bytes of data, r1 = address of data,

 / r2 points to location in buffer in which to

 / start writing data

2:

movb
(r1)+,(r2)+ / transfer a byte of data to the I/O buffer

dec
r3 / decrement no. of bytes to be written

bne
2b / have all bytes been transferred? No, branch

jsr
r0,dskwr / yes, write the block and the i-node

tst
u.count / any more data to write?

bne
1b / yes, branch

jmp
ret / no, return to the caller via 'ret'

cpass: / get next character from user area of core and put it in r1

tst
u.count / have all the characters been transferred (i.e.,

 / u.count, # of chars. left

beq
1f / to be transferred = 0?) yes, branch

dec
u.count / no, decrement u.count

movb
*u.base,r1 / take the character pointed to by u.base and

 / put it in r1

inc
u.nread / increment no. of bytes transferred

inc
u.base / increment the buffer address to point to the

rts
r0 / next byte

1:

mov
(sp)+,r0 / put return address of calling routine into r0

mov
(sp)+,r1 / i-number in r1

rts
r0 / non-local return

sioreg:

mov
*u.fofp,r2 / file offset (in bytes) is moved to r2

mov
r2,r3 / and also to r3

bis
$177000,r3 / set bits 9,...,15. of file offset in r3

bic
$!777,r2 / calculate file offset mod 512.

add
r5,r2 / r2 now points to 1st byte in system buffer where

 / data is to be placed

mov
u.base,r1 / address of data is in r1

neg
r3 / 512 - file offset (mod512.) in r3 (i.e., the number

 / of free bytes in the file block

cmp
r3,u.count / compare this with the number of data bytes to

 / be written to the file

blos
2f / if less than branch. Use the number of free bytes

 / in the file block as the number to be written

mov
u.count,r3 / if greater than, use the number of data bytes

 / as the number to be written

2:

add
r3,u.nread / r3 + number of bytes xmitted during write is

 / put into u.nread

sub
r3,u.count / u.count = no. of bytes that still must be

 / written or read

add
r3,u.base / u.base points to the 1st of the remaining data

 / bytes

add
r3,*u.fofp / new file offset = number of bytes done + old

 / file offset

rts
r0

